Test • NVIDIA GeFORCE RTX 3080 |
————— 16 Septembre 2020
Test • NVIDIA GeFORCE RTX 3080 |
————— 16 Septembre 2020
Détaillons à présent les caractéristiques des nouvelles venues en comparaison d'un certain nombre de cartes des segments Performance et Enthusiast, des générations actuelles et passées, que ce soit du côté rouge, comme vert.
Cartes | GPU | Fréq. Boost GPU (MHz) | Fréq. Mémoire (MHz) | Unités de calcul FP32 | TMU | ROP | Taille mémoire (Go) | Bus mémoire (bits) | Calcul SP (Tflops) | Bande Passante (Go/s) | TGP (W) |
---|---|---|---|---|---|---|---|---|---|---|---|
R9 280 | Tahiti | 933 | 1250 | 1792 | 112 | 32 | 3 | 384 | 3,3 | 240 | 200 |
R9 280X | Tahiti | 1000 | 1500 | 2048 | 128 | 32 | 3 | 384 | 4,1 | 288 | 250 |
R9 285 | Tonga | 918 | 1375 | 1792 | 112 | 32 | 2 | 256 | 3,3 | 176 | 190 |
R9 380 | Tonga | 970 | 1425 | 1792 | 112 | 32 | 2 / 4 | 256 | 3,5 | 182 | 190 |
R9 380X | Tonga | 970 | 1425 | 2048 | 128 | 32 | 4 | 256 | 4 | 182 | 190 |
R9 390 | Hawaii | 1000 | 1500 | 2560 | 160 | 64 | 8 | 512 |
5,1 |
384 | 275 |
R9 390X | Hawaii | 1050 | 1500 | 2816 | 176 | 64 | 8 | 512 | 5,9 | 384 | 275 |
RX 470 | Ellesmere | 1206 | 1650 | 2048 | 128 | 32 | 4 | 256 | 4,9 | 211 | 130 |
RX 480 | Ellesmere | 1266 | 2000 | 2304 | 144 | 32 | 4 / 8 | 256 | 5,8 |
256 |
170 |
RX 570 | Ellesmere | 1244 | 1750 | 2048 | 128 | 32 | 4 / 8 | 256 | 5,1 | 224 | 150 |
RX 580 | Ellesmere | 1340 | 2000 | 2304 | 144 | 32 | 4 / 8 | 256 | 6,2 | 256 | 185 |
RX 590 | Ellesmere | 1545 | 2000 | 2304 | 144 | 32 | 8 | 256 | 7,1 | 256 | 225 |
RX Vega56 | Vega 10 | 1471 | 800 | 3584 | 224 | 64 | 8 | 2048 | 10,5 | 410 | 210 |
RX Vega64 | Vega 10 | 1546 | 946 | 4096 | 256 | 64 | 8 | 2048 | 12,7 | 484 | 295 |
Radeon VII | Vega 20 | 1750 | 1000 | 3840 | 240 | 64 | 16 | 4096 | 13,4 | 1024 | 300 |
RX 5600 XT | Navi 10 | 1375 | 1500 | 2304 | 144 | 64 | 6 | 192 | 6,3 | 288 | 150 |
RX 5700 |
Navi 10 | 1625 | 1750 | 2304 | 144 | 64 | 8 | 256 | 7,5 | 448 | 180 |
RX 5700 XT | Navi 10 | 1755 | 1750 | 2560 | 160 | 64 | 8 | 256 | 9 | 448 | 225 |
GTX 1060 | GP106 | 1708 | 2003 | 1152 | 72 | 48 | 3 | 192 | 3,9 | 192 | 120 |
GTX 1060 | GP106 | 1708 | 2003 | 1280 | 80 | 48 | 6 | 192 | 4,4 | 192 | 120 |
GTX 1070 | GP104 | 1683 | 2003 | 1920 | 120 | 64 | 8 | 256 | 6,5 | 256 | 150 |
GTX 1070 Ti | GP104 | 1683 | 2003 | 2432 | 152 | 64 | 8 | 256 | 8,2 | 256 | 180 |
GTX 1080 | GP104 | 1733 | 1251 | 2560 | 160 | 64 | 8 | 256 | 8,9 | 320 | 180 |
GTX 1080 Ti | GP102 | 1582 | 1376 | 3584 | 224 | 88 | 11 | 352 | 11,3 | 484 | 250 |
GTX 1660 | TU116 | 1785 | 2003 | 1408 | 88 | 48 | 6 | 192 | 5,0 | 192 | 120 |
GTX 1660 Ti | TU116 | 1770 | 1500 | 1536 | 96 | 48 | 6 | 192 | 5,4 | 288 | 120 |
RTX 2060 | TU106 | 1680 | 1750 | 1920 | 120 | 48 | 6 | 192 | 6,5 | 336 | 160 |
RTX 2060 SUPER | TU106 | 1650 | 1750 | 2176 | 136 | 64 | 8 | 256 | 7,2 | 448 | 175 |
RTX 2070 | TU106 | 1620 | 1750 | 2304 | 144 | 64 | 8 | 256 | 7,5 | 448 | 175 |
RTX 2070 SUPER | TU104 | 1770 | 1750 | 2560 |
160 |
64 | 8 | 256 | 9,1 | 448 | 215 |
RTX 2080 | TU104 | 1710 | 1750 | 2944 | 184 | 64 | 8 | 256 | 10,1 | 448 | 215 |
RTX 2080 SUPER | TU104 | 1815 | 1938 | 3072 | 192 | 64 | 8 | 256 | 11,2 | 496 | 250 |
RTX 2080 Ti | TU102 | 1545 | 1750 | 4352 | 272 | 88 | 11 | 352 | 13,5 | 616 | 250 |
RTX 3070 | GA104 | 1725 | 1750 | 5888 | 184 | 96 | 8 | 256 | 20.3 | 448 | 220 |
RTX 3080 | GA102 | 1710 | 1188 | 8704 | 272 | 96 | 10 | 320 | 29,8 | 760 | 320 |
RTX 3090 | GA102 | 1695 | 1219 | 10496 |
328 |
112 | 24 | 384 | 35,6 | 936 | 350 |
La puissance de calcul en MAD (FP32) de la RTX 3080, progresse de 195 % par rapport à la RTX 2080. Derrière ce chiffre tout simplement monstrueux, il ne faut pas oublier qu'il s'agit ici du cas le plus favorable (calcul exclusif de FP32 des 2 côtés) qui pourra se retrouver dans certains types de charge, mais bien plus rarement en jeu, comme nous l'expliquions au sein de la page dédiée à l'architecture. Nvidia en profite néanmoins pour communiquer sur l'augmentation substantielle du nombre de Cuda Cores, toutefois ce n'est qu'un choix de représentation marketing, sur ce que sont vraiment ces derniers. Rappelons également qu'il s'agit ici de comparaison vis-à-vis de fréquences officielles, ces dernières étant presque systématiquement dépassées, le niveau dépendant de la qualité du silicium et des contraintes imposées à la carte. Côté bande passante mémoire, l'utilisation de puces GDDR6X et l'élargissement du but de 256 à 320 bits, permettent un gain de presque 70% face à sa devancière. Rappelons au passage que les comparaisons de chiffres issus de GPU aux architectures différentes restent comme toujours sujettes à caution pour le domaine ludique, puisque rien ne dit que les moteurs 3D pourront en tirer parti de la même manière. Tâchons de voir en pratique le comportement de la nouvelle venue avec quelques tests synthétiques.
Nous utilisons la suite de tests Geeks 3D pour tâcher d'identifier les performances des nouvelles venues dans divers domaines. Débutons avec PixMark Julia FP32, qui permet de mesurer le débit de pixels en simple précision. Ce test relativement bref permet aux modèles de référence limités par leur température de conserver des fréquences plus élevées qu'une session de jeu durant son exécution. S'il traduit relativement bien la puissance "brute" respective des différentes cartes, il ne sollicite pas intégralement le GPU, évitant ainsi la limitation par l'enveloppe thermique de certaines cartes.
La 3080 FE prend 82% d'avance sur la RTX 2070 SUPER, très proche (~4/5%) d'une 2080 de référence (la FE étant overclockée par défaut). L'écart se réduit à 56 % en comparaison du refresh SUPER de la RTX 2080, pour chuter à 25 % face à la 2080 Ti FE (overclockée elle aussi). À noter que les cartes Turing profitent de leur traitement parallèle des entiers et flottants, pour améliorer nettement leurs performances lors de ce test. Ampere le fait aussi, mais comme il doit aussi partager pour la moitié de ses unités FP32, le chemin de données avec les INT32 (entiers), il ne peut créer un écart substantiel dans ce test alors que la comparaison des simples chiffres bruts est pourtant impressionnante.
Poursuivons avec le test GiMark, qui mesure les performances de nos cartes sur une scène très chargée au niveau de la géométrie. Comme nous l'indiquions lors de l'analyse de l'architecture, Nvidia n'a pas retouché son architecture côté géométrie (il n'en a pas besoin), la puissance brute à ce niveau dépend du nombre de SM actifs et de la fréquence du GPU. RTX 3080 et 2080 Ti FE partage le premier nombre (68), mais la seconde dispose de fréquence plus élevée lors de ce test, d'où son léger ascendant. À noter que les performances à ce niveau des GeForce sont bridées par les pilotes afin de laisser un avantage au Quadro, bien plus lucratives.
Terminons cette séquence de tests spécifiques, par le traitement de la Tesselation. Cette fois, les mêmes causes ne créent pas les mêmes effets avec un léger avantage à la RTX 3080 sur Turing. La Tesselation profite toutefois du sous-système cache/mémoire plus rapide sur Ampere, pour s'exécuter plus rapidement sur ce dernier malgré un nombre de Polymorph Engine identique et une fréquence GPU moindre.
C'est tout pour cette partie, voyons page suivante le protocole de test.
|